Wk 3 ****MUST BE IN EXCEL/SHOW WORK/NO PLAGIARISM*****Complete the problems below from the textbook. You will need to use the “Baseball 2016 Data,” “

Wk 3
****MUST BE IN EXCEL/SHOW WORK/NO PLAGIARISM*****Complete the problems below from the textbook. You will need to use the “Baseball 2016 Data,” “Lincolnville School District Bus Data,” and the “Century National Bank Data” files for this assignment. The files are located in the topic materials.

Chapter 6 Problem 45
Chapter 6 Problem 71
Chapter 7 Problem 53
Chapter 7 Problem 55
Chapter 7 Problem 76
Chapter 7 Case A Century National Bank

Don't use plagiarized sources. Get Your Custom Assignment on
Wk 3 ****MUST BE IN EXCEL/SHOW WORK/NO PLAGIARISM*****Complete the problems below from the textbook. You will need to use the “Baseball 2016 Data,” “
From as Little as $13/Page

For problems requiring computations, please ensure that your Excel file includes the associated cell computations and/or statistics output. This information is needed in order to receive full credit on these problems.

Problem 45

Problem 71

Problem 53

Problem 55

Problem 76

Case A Ch 6

problem 45
An auditor for Health Maintenance Services of Georgia reports 40% of policyholders 55 years or older submit a claim during the year. Fifteen policyholders are randomly selected for company records.
a. How many of the policyholders would you expect to have filed a claim within the last year?
b. What is the probability that 10 of the selected policyholders submitted a claim last year?
c. What is the probability that 10 or more of the selected policyholders submitted a claim last year?
d. What is the probability that more than 10 of the selected policyholders submitted a claim last year?

Problem 71
Refer to the Baseball 2016 data. Compute the mean number of home runs per game. To do this, first find the mean number of home runs per team for 2016. Next, divide this value by 162 (a season comprises 162 games). Then multiply by 2 because there are two teams in each game. Use the Poisson distribution to estimate the number of home runs that will be hit in a game. Find the probability that:
a. There are no home runs in a game
b. There are two home runs in a game
c. There are at least four home runs in a game

Ch7

Problem 53
Management at Gordon Electronics is considering adopting a bonus system to increase production. One suggestion is to pay a bonus on the highest 5% of production based on past experience. Past records indicate weekly production follows the normal distribution. The mean of this distribution is 4,000 units per week and the standard deviation is 60 units per week. If the bonus is paid on the upper 5% of production the bonus will be paid on how many units or more?

Problem 55
Best Electronics Inc. offers a no hassle returns policy. The number of items returned per day follows the normal distribution. The mean number of customer returns is 10.3 per day and the standard deviation is 2.25 per day.
a. In what percent of the days are there eight or fewer customers returning items?
b. In what percent of the days are between 12 and 14 customers returning items?
c. Is there any chance of a day with no returns?

Problem 76
Refer to Lincolnville School District
A. Refer to the maintenance cost variable. The mean maintenance cost for last year is $4552 with standard deviation of $2332. Estimate the number of buses with a maintenance cost of more than $6000. Compare that with the actual number. Create a frequency distribution of maintenance cost. Is the distribution normally distributed?
B. Refer to the variable on the number of miles driven since the last maintenance. The mean is 11,121 and the standard deviation is 617 miles. Estimate the number of buses traveling more than 11,500 miles since the last maintenance. Compare that number with the actual value. Create a frequency distribution of miles since maintenance cost. Is the distribution normally distributed?

Case A
Refer to the century national bank data. Is it reasonable that the distribution of checking account balances approximates a normal probability distribution? Determine the mean and the standard deviation for the sample of 60 customers. compare the actual distribution with the theoretical distribution. Cite some specific examples and comment on your findings.
Divide the account balances into three groups, of about 20 each, with smallest third of the balances in the first group, the middle third in the second group, and those with the largest balances in the third group. Next, develop a table that shows the number in each of the categories of the account balances by branch. Does it appear that account balances are related to the branch? Cite some examples and comment on your findings. Sheet1

Balance ATM Services Debit Interest City

1756 13 4 0 1 2

748 9 2 1 0 1

1501 10 1 0 0 1

1831 10 4 0 1 3

1622 14 6 0 1 4

1886 17 3 0 1 1

740 6 3 0 0 3

1593 10 8 1 0 1

1169 6 4 0 0 4

2125 18 6 0 0 2

1554 12 6 1 0 3

1474 12 7 1 0 1

1913 6 5 0 0 1

1218 10 3 1 0 1

1006 12 4 0 0 1

2215 20 3 1 0 4

137 7 2 0 0 3

167 5 4 0 0 4

343 7 2 0 0 1

2557 20 7 1 0 4

2276 15 4 1 0 3

1494 11 2 0 1 1

2144 17 3 0 0 3

1995 10 7 0 0 2

1053 8 4 1 0 3

1526 8 4 0 1 2

1120 8 6 1 0 3

1838 7 5 1 1 3

1746 11 2 0 0 2

1616 10 4 1 1 2

1958 6 2 1 0 2

634 2 7 1 0 4

580 4 1 0 0 1

1320 4 5 1 0 1

1675 6 7 1 0 2

789 8 4 0 0 4

1735 12 7 0 1 3

1784 11 5 0 0 1

1326 16 8 0 0 3

2051 14 4 1 0 4

1044 7 5 1 0 1

1885 10 6 1 1 2

1790 11 4 0 1 3

765 4 3 0 0 4

1645 6 9 0 1 4

32 2 0 0 0 3

1266 11 7 0 0 4

890 7 1 0 1 1

2204 14 5 0 0 2

2409 16 8 0 0 2

1338 14 4 1 0 2

2076 12 5 1 0 2

1708 13 3 1 0 1

2138 18 5 0 1 4

2375 12 4 0 0 2

1455 9 5 1 1 3

1487 8 4 1 0 4

1125 6 4 1 0 2

1989 12 3 0 1 2

2156 14 5 1 0 2 ChartDataSheet_

This worksheet contains values required for MegaStat charts.

Boxplot 1/28/2010 16:03.39

2 741

2 806

3 806

3 827

1 827

3 827

3 851.5

2 851.5

2 908

2 851.5

1 851.5

1 806

2 806

1 669.5

3 669.5

1 737.75

3 737.75

1 919.75

3 919.75

1 988

3 988

Boxplot 1/28/2010 16:06.08

2 741

2 806

3 806

3 827

1 827

3 827

3 851.5

2 851.5

2 908

2 851.5

1 851.5

1 806

2 806

1 669.5

3 669.5

1 737.75

3 737.75

1 919.75

3 919.75

1 988

3 988

Dotplot 1/28/2010 16:06.08

741 1

751 1

757 1

757 2

760 1

774 1

775 1

780 1

784 1

785 1

790 1

792 1

798 1

799 1

799 2

800 1

802 1

803 1

804 1

806 1

806 2

809 1

812 1

815 1

815 2

815 3

816 1

816 2

817 1

817 2

817 3

818 1

819 1

819 2

821 1

822 1

823 1

826 1

827 1

827 2

827 3

828 1

830 1

831 1

832 1

835 1

836 1

837 1

838 1

839 1

842 1

842 2

842 3

844 1

845 1

846 1

847 1

848 1

849 1

851 1

853 1

856 1

857 1

857 2

858 1

859 1

859 2

864 1

865 1

866 1

866 2

869 1

870 1

873 1

874 1

882 1

883 1

885 1

895 1

908 1

Boxplot 1/28/2010 16:08.20

2 741

2 806

3 806

3 827

1 827

3 827

3 851.5

2 851.5

2 895

2 851.5

1 851.5

1 806

2 806

1 669.5

3 669.5

1 737.75

3 737.75

1 919.75

3 919.75

1 988

3 988

1.8 980

1.8 1008

Dotplot 1/28/2010 16:08.20

741 1

751 1

757 1

757 2

760 1

774 1

775 1

780 1

784 1

785 1

790 1

792 1

798 1

799 1

799 2

800 1

802 1

803 1

804 1

806 1

806 2

809 1

812 1

815 1

815 2

815 3

816 1

816 2

817 1

817 2

817 3

818 1

819 1

819 2

821 1

822 1

823 1

826 1

827 1

827 2

827 3

828 1

830 1

831 1

832 1

835 1

836 1

837 1

838 1

839 1

842 1

842 2

842 3

844 1

845 1

846 1

847 1

848 1

849 1

851 1

853 1

856 1

857 1

857 2

858 1

859 1

859 2

864 1

865 1

866 1

866 2

869 1

870 1

874 1

882 1

883 1

885 1

895 1

980 1

1008 1

Bus

Data Set 3 –Lincolnville School District Bus Data

ID Manufacturer Engine Type (0=diesel) Capacity Maintenance Cost Age Odometer Miles Miles

10 Keiser 1 14 4646 5 54375 11973

396 Thompson 0 14 1072 2 21858 11969

122 Bluebird 1 55 9394 10 116580 11967

751 Keiser 0 14 1078 2 22444 11948

279 Bluebird 0 55 1008 2 22672 11925

500 Bluebird 1 55 5329 5 50765 11922 Variables

520 Bluebird 0 55 4794 10 119130 11896

759 Keiser 0 55 3952 8 87872 11889 ID = Bus identification number

714 Bluebird 0 42 3742 7 73703 11837

875 Bluebird 0 55 4376 9 97947 11814 Manufacturer = Source of the bus (Bluebird, Keiser, or Thompson)

600 Bluebird 0 55 4832 10 119860 11800

953 Bluebird 0 55 5160 10 117700 11798 Engine type = If the engine is diesel then engine type = 0; if the engine is gasoline, then engine type = 1)

101 Bluebird 0 55 1955 4 41096 11789

358 Bluebird 0 55 2775 6 70086 11782 Capacity = number of seats on the bus

29 Bluebird 1 55 5352 6 69438 11781

365 Keiser 0 55 3065 6 63384 11778 Maintenance cost = dollars spent to maintain a bus last year

162 Keiser 1 55 3143 3 31266 11757

686 Bluebird 0 55 1569 3 34674 11707 Age = number of years since the bus left the manufacturer

370 Keiser 1 55 7766 8 86528 11704

887 Bluebird 0 55 3743 8 93672 11698 Odometer Miles = total number of miles traveled by a bus

464 Bluebird 1 55 2540 3 34530 11698

948 Keiser 0 42 4342 9 97956 11691 Miles = number of miles traveled since last maintenance

678 Keiser 0 55 3361 7 75229 11668

481 Keiser 1 6 3097 3 34362 11662

43 Bluebird 1 55 8263 9 102969 11615

704 Bluebird 0 55 4218 8 83424 11610

814 Bluebird 0 55 2028 4 40824 11576

39 Bluebird 1 55 5821 6 69444 11533

699 Bluebird 1 55 9069 9 98307 11518

75 Bluebird 0 55 3011 6 71970 11462

693 Keiser 1 55 9193 9 101889 11461

989 Keiser 0 55 4795 9 106605 11418

982 Bluebird 0 55 505 1 10276 11359

321 Bluebird 0 42 2732 6 70122 11358

724 Keiser 0 42 3754 8 91968 11344

732 Keiser 0 42 4640 9 101196 11342

880 Keiser 1 55 8410 9 97065 11336

193 Thompson 0 14 5922 11 128711 11248

884 Bluebird 0 55 4364 9 92457 11231

57 Bluebird 0 55 3190 7 79240 11222

731 Bluebird 0 42 3213 6 68526 11168

61 Keiser 0 55 4139 9 103536 11148

135 Bluebird 0 55 3560 7 76426 11127

833 Thompson 0 14 3920 8 90968 11112

671 Thompson 1 14 6733 8 89792 11100

692 Bluebird 0 55 3770 8 93248 11048

200 Bluebird 0 55 5168 10 103700 11018

754 Keiser 0 14 7380 14 146860 11003

540 Bluebird 1 55 3656 4 45284 10945

660 Bluebird 1 55 6213 6 64434 10911

353 Keiser 1 55 4279 4 45744 10902

482 Bluebird 1 55 10575 10 116534 10802

398 Thompson 0 6 4752 9 95922 10802

984 Bluebird 0 55 3809 8 87664 10760

977 Bluebird 0 55 3769 7 79422 10759

705 Keiser 0 42 2152 4 47596 10755

767 Keiser 0 55 2985 6 71538 10726

326 Bluebird 0 55 4563 9 107343 10724

120 Keiser 0 42 4723 10 110320 10674

554 Bluebird 0 42 1826 4 44604 10662

695 Bluebird 0 55 1061 2 23152 10633

9 Keiser 1 55 3527 4 46848 10591

861 Bluebird 1 55 9669 10 106040 10551

603 Keiser 0 14 2116 4 44384 10518

156 Thompson 0 14 6212 12 140460 10473

427 Keiser 1 55 6927 7 73423 10355

883 Bluebird 1 55 1881 2 20742 10344

168 Thompson 1 14 7004 7 83006 10315

954 Bluebird 0 42 5284 10 101000 10235

768 Bluebird 0 42 3173 7 71778 10227

490 Bluebird 1 55 10133 10 106240 10210

725 Bluebird 0 55 2356 5 57065 10209

45 Keiser 0 55 3124 6 60102 10167

38 Keiser 1 14 5976 6 61662 10140

314 Thompson 0 6 5408 11 128117 10128

507 Bluebird 0 55 3690 7 72849 10095

40 Bluebird 1 55 9573 10 118470 10081

918 Bluebird 0 55 2470 5 53620 10075

387 Bluebird 1 55 6863 8 89960 10055

418 Bluebird 0 55 4513 9 104715 10000 ChartDataSheet_

This worksheet contains values required for MegaStat charts.

Boxplot 12/5/2012 16:43.50

2 1559681

2 2093854.25

3 2093854.25

3 2359022.5

1 2359022.5

3 2359022.5

3 3039260.5

2 3039260.5

2 3565718

2 3039260.5

1 3039260.5

1 2093854.25

2 2093854.25

1 -742364.5

3 -742364.5

1 675744.875

3 675744.875

1 4457369.875

3 4457369.875

1 5875479.25

3 5875479.25

Dotplot 12/5/2012 16:44.17

1559681 1

1603596 1

1607733 1

1679013 1

1721920 1

1739859 1

1965955 1

2091918 1

2099663 1

2102240 1

2123721 1

2177617 1

2219444 1

2242803 1

2347251 1

2370794 1

2420171 1

2630458 1

2776354 1

2831385 1

2882756 1

3028033 1

3043003 1

3061770 1

3262109 1

3324246 1

3377371 1

3460280 1

3542406 1

3565718 1

2012 Season

Team League Opened Team Salary Attendance Wins ERA BA HR Year Average Salary

Arizona National 1998 65.80 2080145 79 4.04 0.264 154 2000 1.99

Atlanta National 1996 89.60 2001392 67 4.41 0.251 100 2001 2.26

Baltimore American 1992 118.90 2281202 81 4.05 0.25 217 2002 2.38

Boston American 1912 168.70 2880694 78 4.31 0.265 161 2003 2.56

Chicago Cubs National 1914 117.20 2959812 97 3.36 0.244 171 2004 2.49

Chicago White Sox American 1991 110.70 1755810 76 3.98 0.25 136 2005 2.63

Cincinnati National 2003 117.70 2419506 64 4.33 0.248 167 2006 2.87

Cleveland American 1994 87.70 1388905 81 3.67 0.256 141 2007 2.94

Colorado National 1995 98.30 2506789 68 5.04 0.265 186 2008 3.15

Detroit American 2000 172.80 2726048 74 4.64 0.27 151 2009 3.24

Houston American 2000 69.10 2153585 86 3.57 0.25 230 2010 3.3

Kansas City American 1973 112.90 2708549 95 3.73 0.269 139 2011 3.31

LA Angels American 1966 146.40 3012765 85 3.94 0.246 176 2012 3.44

LA Dodgers National 1962 230.40 3764815 92 3.44 0.25 187 2013 3.65

Miami National 2012 84.60 1752235 71 4.02 0.26 120 2014 3.95

Milwaukee National 2001 98.70 2542558 68 4.28 0.251 145 2015 4.25

Minnesota American 2010 108.30 2220054 83 4.07 0.247 156 2016 4.4

NY Mets National 2009 100.10 2569753 90 3.43 0.244 177

NY Yankees American 2009 213.50 3193795 87 4.05 0.251 212

Oakland American 1966 80.80 1768175 68 4.14 0.251 146

Philadelphia National 2004 133.00 1831080 63 4.69 0.249 130

Pittsburgh National 2001 85.90 2498596 98 3.21 0.26 140

San Diego National 2004 126.60 2459742 74 4.09 0.243 148

San Francisco National 2000 166.50 3375882 84 3.72 0.267 136

Seattle American 1999 123.20 2193581 76 4.16 0.249 198

St. Louis National 2006 120.30 3520889 100 2.94 0.253 137

Tampa Bay American 1990 74.80 1287054 80 3.74 0.252 167

Texas American 1994 144.80 2491875 88 2.24 0.257 172

Toronto American 1989 116.40 2794891 93 3.8 0.269 232

Washington National 2008 174.50 2619843 83 3.62 0.251 177

Key

Team = Teams name

League = American or National League

Year Opened = First year the teams stadium was used

Team Salary = Total team salary expressed in millions of dollars

Attendance = Total number of people attending regular season games

Wins = Number of regular season games won

ERA = Team earned run average

BA = Team batting average

HR = Team home runs

Year = Year of operation

Average salary = Average annual player salary in dollars

Leave a Comment

Your email address will not be published. Required fields are marked *