Python Homework After running the code I upload, write a code using numpy and panda to sort the stock data by date(month) in recent five years. impo

Python Homework
After running the code I upload, write a code using numpy and panda to sort the stock data by date(month) in recent five years.

import bs4

Don't use plagiarized sources. Get Your Custom Assignment on
Python Homework After running the code I upload, write a code using numpy and panda to sort the stock data by date(month) in recent five years. impo
From as Little as $13/Page

import requests

from bs4 import BeautifulSoup

#1#

r = requests.get(‘https://finance.yahoo.com/quote/FB/history?period1=1442707200&period2=1600560000&interval=1mo&filter=history&frequency=1mo’)

FB_soup = bs4.BeautifulSoup(r.text,’html.parser’)
FB_table =FB_soup.find_all(‘table’,{‘data-test’:”historical-prices”})

FB_stock = []

for table in FB_table:
headers =[]
rows = table.find_all(‘tr’)
for header in table.find(‘tr’).find_all(‘th’):
headers.append(header.text)
for row in table.find_all(‘tr’)[1:]:
values = []
for col in row.find_all([‘th’,’td’]):
values.append(col.text)
if values:
FB_dict = {headers[i]: values[i] for i in range(len(values))}
FB_stock.append(FB_dict)

for info in FB_stock:
print(info)

#2#

r = requests.get(‘https://finance.yahoo.com/quote/AMZN/history?period1=1442707200&period2=1600560000&interval=1mo&filter=history&frequency=1mo’)
AMZN_soup = bs4.BeautifulSoup(r.text,’html.parser’)
AMZN_table = AMZN_soup.find_all(‘table’,{‘data-test’:”historical-prices”})

r = requests.get(‘https://finance.yahoo.com/quote/AMZN/history?period1=1442707200&period2=1600560000&interval=1mo&filter=history&frequency=1mo’)
AMZN_soup = bs4.BeautifulSoup(r.text,’html.parser’)
AMZN_table = AMZN_soup.find_all(‘table’,{‘data-test’:”historical-prices”})
AMZN_stock = []

for table in AMZN_table:
AMZN_headers = []
AMZN_rows = table.find_all(‘tr’)
for header in table.find(‘tr’).find_all(‘th’):
headers.append(header.text)
for row in table.find_all(‘tr’)[1:]:
values = []
for col in row.find_all([‘th’,’td’]):
values.append(col.text)
if values:
AMZN_dict = {headers[i]: values[i] for i in range(len(values))}
AMZN_stock.append(AMZN_dict)

for info in AMZN_stock:
print(info)

#3#

r = requests.get(‘https://finance.yahoo.com/quote/GOOG/history?period1=1442707200&period2=1600560000&interval=1mo&filter=history&frequency=1mo’)
GOOG_soup = bs4.BeautifulSoup(r.text,’html.parser’)
GOOG_table = GOOG_soup.find_all(‘table’,{‘data-test’:”historical-prices”})
GOOG_stock = []

for table in GOOG_table:
GOOG_headers = []
GOOG_rows = table.find_all(‘tr’)
for header in table.find(‘tr’).find_all(‘th’):
headers.append(header.text)
for row in table.find_all(‘tr’)[1:]:
values = []
for col in row.find_all([‘th’,’td’]):
values.append(col.text)
if values:
GOOG_dict = {headers[i]: values[i] for i in range(len(values))}
GOOG_stock.append(GOOG_dict)

for info in GOOG_stock:
print(info)

#4#

r = requests.get(‘https://finance.yahoo.com/quote/AAPL/history?period1=1442707200&period2=1600560000&interval=1mo&filter=history&frequency=1mo’)
AAPL_soup = bs4.BeautifulSoup(r.text,’html.parser’)
AAPL_table = AAPL_soup.find_all(‘table’,{‘data-test’:”historical-prices”})
AAPL_stock = []

for table in AAPL_table:
AAPL_headers = []
AAPL_rows = table.find_all(‘tr’)
for header in table.find(‘tr’).find_all(‘th’):
headers.append(header.text)
for row in table.find_all(‘tr’)[1:]:
values = []
for col in row.find_all([‘th’,’td’]):
values.append(col.text)
if values:
AAPL_dict = {headers[i]: values[i] for i in range(len(values))}
AAPL_stock.append(AAPL_dict)

for info in AAPL_stock:

Leave a Comment

Your email address will not be published. Required fields are marked *